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Abstract. In this paper we find and present on diagrams in the coordinates of η = 2t1/t0 (the ratio of
the second and the first nearest neighbor hopping integrals) and n (the carrier concentration) the areas of
stability for the superconducting spin-singlet s- and d -wave and the spin-triplet p-wave order parameters
hatching out during the phase transition from the normal to the superconducting phase. The diagrams are
obtained for an anisotropic two-dimensional superconducting system with a relatively wide partially-filled
conduction band. We study a tight-binding model with an attractive nearest neighbor interaction with the
amplitude V1, and the on-site interaction (with the amplitude V0) taken either as repulsive or attractive.
The problem of the coexistence of the s-, p- and d -wave order parameters is addressed and solved for chosen
values of the ratio V0/V1. A possible island of stability of the d -wave order parameter in the s-wave order
parameter environment for a relatively strong on-site interaction is revealed. The triple points, around
which the s-, d -, and p-wave order parameters coexist, are localized on diagrams. It is shown that results
of the calculations performed for the two-dimensional tight-binding band model are dissimilar with some
obtained within the BCS-type approximation.

PACS. 74.20.Rp Pairing symmetries (other than s-wave) – 74.62.Yb Other effects

1 Introduction

Superconducting high-Tc systems, such as copper-oxides,
with carriers within the CuO2 planes are usually regarded
as a quasi two-dimensional system of fermions [1–5]. This
is due to the characteristic, strongly anisotropic, layered
structure of these materials with the symmetry of the
CuO2 planes being the symmetry of the point group
C4v [6–10].

Such superconducting systems demand to take into ac-
count spin-fluctuations or strong-correlation effects, and
can be described by means of an effective Hamiltonian
of the strongly interacting Hubbard model with a given
(multiband) one-particle dispersion relation enriched also
by the self-energy corrections, and a quite general form
of the pairing potential V (k,k′) [4,11–15]. The pairing in-
teraction can be decomposed into an antisymmetric and
a symmetric part determining the spin-singlet (s- and
d -wave) and the spin-triplet (p-wave) symmetry of the
order parameter, respectively [16].

Acting in the spirit of the tight binding description
we can assume that the overlap of the orbitals in differ-
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ent unit cells is small, compared to the diagonal overlap
values, thus the matrix element of V (k,k′) may contain
the on-site term, and the nearest neighbors and the further
neighbors terms, which give rise to diverse wave-symmetry
channels [17]. Since in the present paper we study the sta-
bility relations between the spin-singlet s- and d -wave and
the spin-triplet p-wave order parameters with symmetry
properties determined by the Fourier harmonics appear-
ing in the expansion of the pairing potential into a double
Fourier series, and the further neighbors terms correspond
to higher order Fourier expansion coefficients [7,10], we
focus on a model with an attractive nearest neighbor in-
teraction with the amplitude V1 and an on-site interaction
with the amplitude V0, which can be taken either as repul-
sive or attractive. Moreover, we employ the one-particle
band-structure reduced to a renormalized dispersion rela-
tion ξk being a differentiable function of the momentum k
and fitted the parameters, whose symmetry corresponds
to the symmetry group C4v [1,2,4,7,16,18,19]. Although
some possibilities of various superconducting symmetries
including the effects of the η-ratio have been considered
with regard to cuprates and ruthenates, and spreads of
the domination of the p-wave or d -wave pairing states
were outlined [20–22], the numerical results obtained in
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the present paper determine stable regions of the order
parameter for various values of the model parameters:
η = 2t1/t0 (the ratio of the second and the first nearest
neighbor hopping integrals), n (the carrier concentration)
and υ = V0/V1. They display qualitative modifications of
these stable regions implied by η, n and υ varying in their
full acceptable range. The performed study points to some
potentially global conditions of coexistence and stability
of different superconducting states with a fixed symmetry.

Let us also note that considering the problem of coexis-
tence of the spin-singlet s- and d -wave and the spin-triplet
p-wave order parameters some authors also included a
large spin-orbit coupling [23,24], as well as the broken
inversion symmetry with antisymmetric spin-orbit cou-
pling, which can contribute to the formation of particular
states [25,26].

2 Employed formalism

Employing the Green function formalism one can find two
basic equations, consistent with the mean-field approxima-
tion, i.e. the gap equation in the momentum space [6–9]

∆k =
∑

k′
V (k,k′)

∆k′

Ek′
tanh

Ek′

2T
, (1)

where Ek =
√

(ξk − µ)2 + ∆2
k, and another self-

consistent equation

n =
1
N

∑

k

(
1 − ξk − µ

Ek
tanh

Ek

2T

)
, (2)

which determines the total chemical potential µ = µ0 +
µ(T ). Here, µ0 fixes the shift of the Fermi level due to
doping and is a function of the conduction band filling n
defined for the normal metallic phase at T = 0, whereas
µ(T ) expresses its temperature correction (µ(0) = 0). N
denotes the total number of lattice sites [16,19,27–29].

Since in anisotropic superconductors both the spin-
singlet s-wave or d -wave symmetry states (S = 0, M = 0)
and the spin-triplet p-wave symmetry state (S = 1, M =
0) can be formed, we investigate the impact of modifica-
tions in the shape of the dispersion relation taken in the
tight-binding approach on stability of the above symme-
try states. The influence of other factors, i.e. the carrier
concentration n, and the pairing potential amplitudes V0

and V1 is also studied. In the present paper we consider
a two-dimensional one-band model with a relatively wide
partially-filled conduction band of the width 2ω and the
dispersion relation taken in the form

ξk = −2t0(cos kx + cos ky + η cos kx cos ky), (3)

where η = 2t1/t0 and the case η = 0 corresponds to the
ideal nesting. The parameters t0, t1 can be identified with
the nearest-neighbor and the next-nearest-neighbor hop-
ping integrals, respectively [30,31].

Superconductivity with anisotropic Cooper pairing has
now to be defined and analyzed regarding the symmetry

based on the new quasiparticles, taking into consideration
the generalized Ginzburg-Landau theory for unconven-
tional superconductivity. However, the effective interac-
tion between quasiparticles in strongly correlated systems
is very complex as it in general depends on the spin and
the current carried by quasiparticles. Since the conven-
tional phonon-mediated pairing mechanism raises doubts
— because of the expected magnetically mediated pairing
mechanism, arising from the exchange of magnetic fluctu-
ations — a generic, boson-mediated, strongly anisotropic
attraction mechanism providing pairing interaction in the
spin-antisymmetric and the spin-symmetric channels is in-
cluded in the present study [1,3,4,19].

Considering the Fourier-transformed generic boson-
mediated potential on a square lattice, we can assume
that it is translational invariant and separable, so that
the matrix element V (k,k′) can be rewritten as

V (k,k′) = V s(k,k′) + V a(k,k′),

where the potentials V s(k,k′) = V s(−k,k′) = V s(k,−k′)
and V a(k,k′) = −V a(−k,k′) = −V a(k,−k′), refer to the
spin-singlet and the spin-triplet pairing channels, respec-
tively. Moreover, these components can be presented in
separable forms

V s(k,k′) = −V0 −
∑

j≥1, m

V s
j fjm(k)fjm(k′),

V a(k,k′) = −
∑

j≥1, m

V a
j gjm(k)gjm(k′). (4)

Then V0 and V s,a
j are the amplitudes in the isotropic

and anisotropic channels, corresponding to the on-site
term, and the nearest neighbors and the further neighbors
terms, respectively. The momentum-dependent functions
fjm(k), gjm(k), for a given j, should be taken from proper
subsets of normalized and orthogonal basis functions of
irreducible representations of the group C4v defined for a
two-dimensional momentum space, including proper pair-
ing channel symmetry [7,17]. Thus, their Fermi-surface-
averages 〈f2

jm(k)〉 = 〈g2
jm(k)〉 = 1 and 〈fjm(k)〉 =

〈gjm(k)〉 = 0, and 〈fim(k)fjn(k)〉 = 〈gim(k)gjn(k)〉 = 0,
if i �= j or m �= n.

Instead, if the Fourier-transformed, specific boson-
mediated potential, as e.g. in the magnetically mediated
superconductivity [1], is given in the frequency and mo-
mentum representation including the translational invari-
ance, then after projecting the pairing term on the previ-
ously defined subsets of the basis functions of irreducible
representations of the group C4v one should write down
this pairing potential in the form (4). Note that the de-
rived amplitudes can depend on frequency in the cutoff
range of pairing (however rather as slowly-varying func-
tions). Consequently, this approach seems to be less ef-
fective for models with interactions formulated in such a
way.

In the present paper the studied boson-mediated pair-
ing mechanism is assumed to take the phenomenological
form reduced to isotropic on-site and anisotropic nearest-
neighbor interactions on a two–dimensional square lat-
tice, covering a relatively narrow region in the conduction
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band. In the reciprocal space the pairing potential reads
(here ax = ay = 1) [4,32–35]

V (k,k′) = −V0 − V1[cos(kx − k′
x) + cos(ky − k′

y)], (5)

where the on-site potential with the amplitude V0 can
be repulsive or attractive, whereas the nearest neighbor
potential (amplitude V1) is always attractive, and they
vanish beyond the cutoff energy ±ωc. So, we consider
a high-Tc superconductor as a metallic system with a
partially-filled conduction band and the pairing interac-
tion in a confined region near to the Fermi level, and
the additional phenomenological parameter υ = V0/V1

extends the range of application of the presented model.
After some algebra the potential (5) can be transformed
into the following separated forms [4,6–9,35]

V s(k,k′) = −V0 − 1
2
V1(cos kx + cos ky)(cos k′

x + cos k′
y)

−1
2
V1(cos kx − cos ky)(cos k′

x − cos k′
y), (6)

V a(k,k′) = −V1(sin kx sin k′
x + sinky sin k′

y) (7)

compatible with irreducible representations of the group
C4v in the two-dimensional momentum space, and consis-
tent with (4).

In order to perform detailed analytical and numerical
calculations we employ the method of curvilinear trans-
formations [7–9,16,18,19], which allows us to write down
the fundamental equations (1) and (2) in a particular co-
ordinate system (ξ, ϕ), where ξ stands for the one-particle
energy and ϕ is the angular variable of the standard polar
coordinate system.

In the present paper we apply the formalism we have
developed recently [9,18], which can be regarded as the
extended Van Hove Scenario valid for superconducting
systems with anisotropic pairing, maintaining the cor-
rect number of degrees of freedom in a two-dimensional
reciprocal space. This formalism allows us to perform
detailed analysis applying more convenient coordinate sys-
tem. Consequently, the spin-singlet and spin-triplet pair-
ing potentials can be then expanded in a double Fourier
series in the angular variable. Since the spatial structure
of the order parameter is determined by the dominating
coefficient of the Fourier expansion, the symmetry of the
order parameter can be identified with respect to the har-
monic functions sin nϕ and cosnϕ [6–9,18,35,36].

The employed curvilinear transformation (the mathe-
matical details are given in Ref. [7]) allows us to express
the coordinates kx, ky as functions of ξ, ϕ, and eventually
to replace the summation over quantum-mechanical states
by the integration over ξ and ϕ according to the following
formula

∑

k

. . . =
∫ ωc

−ωc

dξ

∫ 2π

0

dϕ

2π
K(ξ, ϕ) . . . ,

where K(ξ, ϕ) = 2
(2π)2 J (ξ, ϕ) (with J being the Jacobian

of the curvilinear transformation) can be treated as the
kernel of the density of states corresponding to the local

deformation or modification of quantum-mechanical states
in the (ξ, ϕ)-space. The coordinates kx, ky and the kernel
of the density of states as functions of ξ, ϕ, for the tight-
binding model with particle-hole asymmetry η, are of the
forms [6–9,16,18,19]

kx(ξ, ϕ, η) = arccos
1
η
[X(ξ, ϕ, η) − 1],

ky(ξ, ϕ, η) = arccos
1
η
[Y (ξ, ϕ, η) − 1], (8)

and

K(ξ, ϕ, η) =

η2

4πt0

1√
η2 − [X(ξ, ϕ) − 1]2

√
η2 − [Y (ξ, ϕ) − 1]2

× 1
[X(ξ, ϕ)]2 + [Y (ξ, ϕ)]2

1
1 + sin 2ϕ

φ0(ξ), (9)

where

X(ξ, ϕ, η) =
⎡

⎣
√(

1 − η
ξ

2t0

)2

+ η2φ2
0(ξ) f2(ϕ) + ηφ0(ξ) f(ϕ)

⎤

⎦

1
2

and

Y (ξ, ϕ, η) =
⎡

⎣
√(

1 − η
ξ

2t0

)2

+ η2φ2
0(ξ) f2(ϕ) − ηφ0(ξ) f(ϕ)

⎤

⎦

1
2

,

whereas

φ0(ξ, η) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2(1+η)2

∣∣∣ 2 + η + ξ
2t0

∣∣∣
∣∣∣ 2 + 2η + η2 − η ξ

2t0

∣∣∣
if ξ

2t0
≤ η

1
2(1−η)2

∣∣∣ 2 − η − ξ
2t0

∣∣∣
∣∣∣ 2 − 2η + η2 − η ξ

2t0

∣∣∣
if ξ

2t0
≥ η

and
f(ϕ) =

sin ϕ − cosϕ

sin ϕ + cosϕ
.

Note that φ0(ξ, η) = φ0(−ξ,−η), X(ξ, ϕ, η) =
Y (−ξ, ϕ,−η), and K(ξ, ϕ, η) = K(−ξ, ϕ,−η). The density
of states can be then defined as [7–9,16,18,19]

ν(ξ, η) =
2
π

∫ π/2

0

dϕK(ξ, ϕ, η), (10)

and ν(ξ,−η) = ν(−ξ, η).
In the case when one Fourier component dominates the

others, the form of the symmetric (6) and the antisymmet-
ric (7) components of the pairing potential, responsible for
the formation of the spin-singlet, s- and d -wave, and the
spin-triplet p-wave order parameters, respectively, read
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1 pure s-wave pairing

V s(ξ, ϕ ; ξ′, ϕ′) = −V0 −U0(η, n) v0(ξ, η, n) v0(ξ′, η, n),

2 pure p-wave pairing

V a(ξ, ϕ ; ξ′, ϕ′) = −2U1(η, n) v1(ξ, η, n) v1(ξ′, η, n)
× [cosϕ cosϕ′ + sin ϕ sin ϕ′],

3 pure d-wave pairing

V s(ξ, ϕ ; ξ′, ϕ′) = −2U2(η, n) v2(ξ, η, n)

× v2(ξ′, η, n) cos 2ϕ cos 2ϕ′,

where for l = 0, 1, or 2, vl(ξ, η, n) = χl(ξ, η)/χ̄l(η, n), the
carrier concentration n = n(η, µ0) and

χ̄l(η, n) =
1

2ωc

∫ ωc+µ0

−ωc+µ0

χl(ξ, η) dξ

is the (η, n)-dependent mean value of the Fourier co-
efficient χl(ξ, η) in the pairing region of the width 2ωc

(cf. Appendix A). The function Ul(η, n) = V1 [χ̄l(η, n)]2
defines the modified coupling coefficient for a partic-
ular pairing channel, satisfying the symmetry relation
Ul(η, n(η, µ0)) = Ul(−η, n(−η,−µ0)) for l = 0, 1 and
l = 2. Since the purely s-wave pairing potential is also
modified (enhanced or diminished) by the constant term
V0 corresponding to the on-site interaction, the s-wave
symmetry superconducting state can gain the total stabil-
ity for sufficiently large and positive V0 or it can be com-
pletely eliminated from the system for sufficiently large
and attractive V0.

Note that the separable forms 1–3 of the re-
duced pairing potential impose the following symme-
try conditions on the order parameter: ∆(ξ, ϕ, l, η, n) =
∆(T ) vl(ξ, η, n)D(ϕ, l), with

D(ϕ, 0) = 1 for s-wave pairing

D(ϕ, 1) =
√

2 cos(ϕ + β1) for p-wave pairing

D(ϕ, 2) =
√

2 cos 2ϕ for d -wave pairing

and solely β1 = 0, ±π/4, π/2 should be included [7].
With regard to Fourier transformed generic boson-

mediated potentials, the presented method of expanding
the pairing potential in a double series of Fourier harmon-
ics sin nϕ and cosnϕ has to be found to be more effec-
tive than the previously discussed, since the coefficients of
the Fourier expansion define pairing amplitudes of a fixed
symmetry. Consequently, in the case of magnetically medi-
ated superconductivity [1], where spin-fluctuation modes
contribute to the pairing amplitudes in the singlet and
triplet channels in a different manner, the p-wave spin-
triplet pairing appears in nearly ferromagnetic metals. On
the other hand the d -wave spin-singlet pairing appears in
nearly antiferromagnetic metals, what corresponds to the
opposite values of one rigidly fixed parameter (±2). Thus,
one can suspect that the p-wave and d -wave pairing am-
plitudes exchange domination when this rigidly fixed pa-
rameter takes the opposite value.

3 Analytical equations and numerical results

According to the experimental data [12,30,37–42] the di-
mensionless parameter η derived for the two-dimensional
one-band tight-binding model for cuprate materials is neg-
ative and |η| ≤ 0.9. On the other hand its value as-
sessed for the two-dimensional t–J model with an antifer-
romagnetic background, employing the quantum Monte
Carlo method, is positive and can take values up to 1.53.
Including t0 = 0.24 or 0.35 eV [30], ωc ranging from
26 meV to 65 meV [12], and employing the results of the
local density approximation band structure calculations,
where the band structure of YBCO was considered in the
εF ± 2 eV range [15], we may chose ωc/2t0 ≈ 0.1 and
ω/ωc = 11 for numerical evaluations. We also take into
account that −0.9 ≤ η ≤ 0.9, and we demand the effec-
tive dimensionless pairing coefficient to satisfy the weak-
coupling condition: 1

2 ν0 (η)U2(η) < 0.41. In the present
study we focus on the cases when the pairing amplitude
V1/2πt0 = 0.6, 1 or 1.9, and the ratio υ = V0/V1, ranging
between around −0.61 and 0.90, takes the following val-
ues: −0.25, 0, 0.25, 0.5, 0.6, 0.7 and 0.85. Moreover, the
chosen conditions allow us to study some superconduct-
ing systems with a partially-filled conduction band when
the chemical potential −1 ≤ µ0/2t0 ≤ 1. Then the carrier
concentration n can vary between the lower limit from
0.02 to 0.14 and the upper one from 0.98 to 0.86.

The transformed equations (1) and (2) can be then ap-
plied to derive the order parameter amplitude ∆(T ) and
the chemical potential µ = µ0+µ(T ) of the superconduct-
ing phase with the symmetry corresponding to l = 0, 1 or
2, for a fixed carrier concentration n.

In the T = Tc limit these equations can be written in
the following reduced forms [7–9]

1 = [V0 δ0,l + Ul(η, n)]

×
∫ 2π

0

dϕ

2π

∫ ωc

−ωc

dξ K(ξ + µ0, ϕ, η)

× D2(ϕ, l)
ξ − µ(Tc)

tanh
ξ − µ(Tc)

2Tc
, (11)

where we assume that vl(ξ + µ0, η) ∼= 1. Consequently,
equation (2) reads

n =
1
N

∫ 2π

0

dϕ

2π

∫ ωc

−ωc

dξ K(ξ, ϕ, η)

×
[
1 − tanh

ξ − µ0 − µ(Tc)
2Tc

]
. (12)

Employing equation (2) in the limit T = 0 one can eval-
uate relations among n, µ0 and η and find the carrier
concentration n as a function of η and µ0 for a fixed band-
width 2 ω. Then n(−η, µ0) = 1 − n(η,−µ0) [7–9].

In order to identify the regions of stability for s-
, p-, and d -wave symmetry superconducting states on
the (η, n) plane for the chosen values of V0/V1 ratio
and the fixed amplitude V1, which are hatching out dur-
ing the phase transition from the normal to supercon-
ducting phase, we compare the transition temperatures
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Fig. 1. The diagrams of stable spin-singlet s- and d -wave, and spin-triplet p-wave superconducting states obtained within the
one-band tight-binding approach for various values of the υ = V0/V1 ratio: (a) υ = −0.25, (b) υ = 0, (c) υ = 0.25, (d) υ = 0.5.
Supreme values of the transition temperature within the d -wave state stability area are attained along the dotted line. The
half-filled conduction band (µ0/2t0 = 0) is denoted by the dashed line. Triple points positions are given in Table 1. In this and
the following figures, the permitted region of the variables η and n, resulting from their relation to µ0, is shown as the unshaded
area.

Table 1. The positions of triple points in the (η, n) diagrams estimated within the tight-binding approach for the chosen
values of the υ = V0/V1 ratio.

υ −0.25 0 0.25 0.5 0.6
(η, n) (−0.84, 0.14) (−0.75, 0.16) (−0.56, 0.20) (−0.24, 0.28) (0.046, 0.33)
(η, n) (0.84, 0.86) (0.75, 0.84) (0.56, 0.80) (0.24, 0.72) (−0.046, 0.67)

Tc(l, η, n) found self-consistently from equations (11) and
(12) for fixed values of l, η and µ0, applying recently de-
veloped methods [6–9,18,36]. According to the established
relations the transition temperatures satisfy the relation
Tc(l,−η, n(−η, µ0)) = Tc(l, η, n(η,−µ0)) for l = 0, 1, 2.

In order to provide some reference for our results, we
also employ the BCS-type approximation, where the ker-
nel of the density of states K(ξ, ϕ, η) is replaced by the
average value of the density of states, i.e.

ν0(η) =
1
2ω

∫ ωc

−ωc

dξ ν(ξ, η), (13)

then the transition temperature reads

Tc0(l, η, n) =
2eγ

π
ωc exp

{
− 2

ν0(η) [V0 δ0,l + Ul(η, n)]

}
,

(14)
where γ ≈ 0.577 is the Euler constant, or Tc0(l, η, n) =
0 if V0 δ0,l + Ul(η, n) ≤ 0. Moreover we have
Tc0(l,−η, n(−η, µ0)) = Tc0(l, η, n(η,−µ0)) for l = 0, 1, 2.

The diagrams in Figures 1 and 2 illustrate the common
result obtained for three values of the pairing amplitude
V1/2πt0 = 0.6, 1, or 1.9 after replacing µ0 with n and mu-
tual comparison of the transition temperatures Tc(0, η, n),
Tc(1, η, n) and Tc(2, η, n), when the values of the V0/V1 ra-
tio are equal to −0.25, 0, 0.25, 0.5, 0.6, 0.7 and 0.85, re-
spectively. We emphasize that within the discussed model
the boundary condition Tc(0, η, n) = Tc(1, η, n) coincides
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Fig. 2. Expulsion of the stable spin-singlet d -wave and the spin-triplet p-wave superconducting states from the diagrams
by the spin-singlet s-wave superconducting state. Results obtained within the one-band tight-binding approach for various
values of the υ = V0/V1 ratio. (a) The stability areas of the three discussed states for υ = 0.6 survive until υ < 0.64. (b)
The p-wave state has been eliminated (υ = 0.7). (c) The d -wave state for υ = 0.85 forms an island around the central point
(η = 0, n = 0) of the diagram. (d) Only the s-wave state can be realized in the system for υ ≥ 0.9. In (a–c) the supreme values
of the transition temperature within the d -wave state stability areas are attained along the dotted line. The half-filled band
concentration (µ0/2t0 = 0) is denoted by the dashed line. In (d) the equi-concentration lines for µ0/2t0 = ±0.3,±0.6,±0.9,±1.0
have been additionally shown as thin dashed lines.

with the relation Tc0(0, η, n) = Tc0(1, η, n) for all values
of υ [7–9,18].

The shape and the evolution of stability areas for par-
ticular order parameters show that the stable s-wave state
appears on the diagram if υ ≥ −0.61, and it is preferred
for the low and the high concentration n if υ is negative,
zero or positive (although small). The stability areas for
the s-wave state expand when υ increases (Figs. 1 and 2a),
so that the p-wave state is eventually eliminated from the
diagram for υ ≥ 0.64 (cf. Figs. 2b–2d). The diminishing
area of the stable d -wave state forms an island in the
s-wave order parameter sea (as depicted in Fig. 2c), and
occupies the central region of the diagram for υ up to ca.
0.9. For larger values of υ only the s-wave state can be
realized in the system.

Since for the diagrams the stability areas for the
s-wave, d -wave, and p-wave order parameters have been
evaluated in the limit ∆(T ) → 0, the pure-symmetry state
exist in these areas only, which are separated from the
others by phase transition lines. However, one can ex-
pect that in superconducting phase when the tempera-

ture T is very close to Tc(l, η, n), the phase transition
lines broaden proportionally to (Tc(l, η, n) − T ). Then one
can find regions — near to the boundaries between the
distinguished areas — where the spin-singlet s-wave and
the spin-triplet p-wave or the spin-singlet d -wave and the
spin-triplet p-wave, or the spin-singlet s-wave and the
spin-singlet d -wave order parameters coexist (cf. Figs. 1
and 2).

On the diagrams there also appear triple points around
which spin-singlet s-wave and the d -wave, and spin-triplet
p-wave order parameters can coexist as in Figures 1
and 2a. Some estimated values of the triple points po-
sitions are given in Table 1. The supreme values of the
transition temperature found for a given value of the
parameter η are located along the dotted line in the d -
wave order parameter region in Figures 1 and 2. Note
that the dotted line always goes through the central point
of diagrams (η = 0, n = 0) and the highest transition
temperatures are attained for the d -wave superconduct-
ing state.
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In Figure 1 we present some cases when stability ar-
eas for s-wave, d -wave, and p-wave order parameters
are revealed. They appear for −0.9 ≤ η ≤ 0.9 and
nd < n < nu where nd = n(η, µ0/2t0 = −1) > 0 and
nu = n(η, µ0/2t0 = 1) < 1. Stability areas for order pa-
rameters of various symmetry can be observed in the pre-
sented diagrams when −0.61 < υ < 0.64.

In Figure 2 we display some cases, when stability ar-
eas for the d -wave and p-wave order parameters are elim-
inated from the diagrams by the s-wave order parameter.
The stability areas for the p-wave order parameter remain
on the diagram when υ < 0.64, whereas stability areas for
the d -wave order parameter survive until υ = 0.9.

Calculations carried out based on the two-dimensional
tight-binding band model allowed us to include the com-
plex structure of the dispersion relation and the pairing
potential treated within the conformal transformation ap-
proach [6–9,36]. The obtained results show that in the case
of a nearly half-filled conduction band the spin-singlet d -
wave symmetry superconducting state remains stable for
small values of the parameter η, even for a strong attrac-
tive on-site interaction (Figs. 1 and 2). So, the d -wave
state is able to compete with the s-wave one in some
doped systems. In contrary to this approach the numer-
ical results obtained within the BCS-type approximation
by employing equation (14) reveal a strong domination of
the s-wave state in the presence of an attractive on-site
interaction (Fig. 3).

The more detailed calculations performed for the BCS-
type approximation clearly illustrate how the stability
areas of the s-wave order parameter gradually fill up
the diagram with increasing attractive on-site interac-
tion (V0 > 0), and how they are being eliminated when
this interaction becomes repulsive (V0 < 0). The dia-
grams of stable superconducting states obtained for υ =
−0.25, 0, 0.25, 0.5, 0.6 and υ ≥ 0.64 are presented in Fig-
ure 3. The s-wave order parameter is stable in the whole
diagram if υ ≥ 0.64, and it is completely eliminated from
the diagram if υ ≤ −0.61 [8,9]. The boundaries estab-
lished between the stability areas of the s-wave and the
p-wave order parameters partially coincide with some ob-
tained for the tight-binding model, while the boundaries
between stability areas for the p-wave and the d -wave or-
der parameters keep their shape. This results in a shift of
the triple points.

Since the transition temperatures depend on η, n, υ
and the order parameter symmetry, they vary essentially
within the diagrams and amongst them. It allows us to
argue that in some high-Tc superconductors of similar
molecular composition, different symmetry order param-
eters can be created during the phase transition. More-
over, the isotropic on-site interaction and the contributing
anisotropic nearest-neighbor interactions can significantly
modify the regions of order parameters stability.

Although the above considerations involve the case
∆(T ) → 0 and can be referred merely to the regions of
temperatures very close to Tc(l, η, n), which are the most
intensively investigated experimentally, the developed for-

malism can be also employed to study stability of the order
parameters for temperatures from 0 to Tc(l, η, n).

Since ∆(T ) and µ = µ0 + µ(T ), for the specified sym-
metry of the order parameters and fixed n, can be de-
rived from the transformed equations (1) and (2), inde-
pendently [7], one can find the free energy difference em-
ploying some universal relations between the energy gap
∆(T ) and the thermodynamic potential difference defined
between the superconducting and the normal phase [43],
and the chemical potential of the superconducting phase.
After comparison of the free energy differences for the
given model parameters and temperature, one can iden-
tify a stable order parameter. However, such procedure is
very arduous to perform for the imposed conditions.

4 Conclusions

Comparing the results of the tight-binding approach and
those obtained for the simplified BCS-type approximation
one should note the fundamental differences in the topol-
ogy of the phase diagram with regard to the stability areas
of the s-, p-, and d -wave order parameters, and their grad-
ual evolution. The obtained results prove that the ratios
υ = V0/V1 and η = 2t1/t0, as well as the carrier concen-
tration n, have a crucial impact on values of the transition
temperature for superconducting states of a fixed symme-
try (s-, p- or d -wave).

Numerical calculations performed for the tight-binding
band model point out that the spin-singlet d - or s-wave,
and the spin-triplet p-wave symmetry superconducting
states can be stable in large areas of the (η, n) plane
for all values of η (i.e. |η| ≤ 0.9), if one fixes the car-
rier concentration n properly. The regions near to the
boundary between the areas of stable states seem to be
of special interest, because two different order parameters
coexist there. With regard to the triple points, the ob-
servation of coexistence of the s-, d -, and p-wave order
parameters could be possible for various doped samples
if −0.61 ≤ υ ≤ 0.64 [7–9,12,44]. Beyond these limits the
triple points are eliminated from the diagram and, even-
tually, the s-wave order parameter is being strongly sup-
pressed or fully favored. We emphasize that the model pa-
rameters: η, n, υ have a diverse and mutually competing
influence on the values of transition temperatures. Hence,
if the on-site interaction is attractive, the s-wave order
parameter is stabilized in the whole diagram only when
υ ≤ 0.64 (cf. [21]).

Certainly, we do not insist that the tight-binding
model results are quantitatively complete. Our aim was
rather to display that by applying the presented cal-
culation method to some other more composed models
of high-Tc superconductors, one should obtain qualita-
tively comparable results. Moreover, the triple point ef-
fects, and coexistence of the s-wave and the d -wave order
parameters should be possible to observe in the delineated
regions of the diagrams. We emphasize that one could
not expect that the discussed model parameters (i.e. n,
η, and υ) can be modified in their full range under con-
sideration in one composed superconducting system by
doping and introducing impurities. However, there are
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Fig. 3. (a) The diagram of stable spin-singlet s- and d -wave, and spin-triplet p-wave superconducting states obtained within
the BCS-type approximation for various values of the υ = V0/V1 ratio: (a) υ = −0.25, (b) υ = 0, (c) υ = 0.25, (d) υ = 0.5,
(e) υ = 0.6, (f) υ ≥ 0.64. The half-filled band concentration (µ0/2t0 = 0) is denoted by the dashed line. In Figure f the
equi-concentration lines for µ0/2t0 = ±0.3,±0.6,±0.9,±1.0 have been additionally displayed as thin dashed lines.

many possibilities in experimental search for the discussed
effects. For example, in the YBa2Cu3O6+x compounds
the metallic phase is formed by hole carriers roughly for
x > 0.5 and the increase in carrier concentration is implied
by controlled oxygen doping. Since the superconducting
state of the correlated pairs of holes is realized in the
metallic phase regime, the points corresponding to vari-
ous values of the parameter x (determining n, η and υ),
should be distributed in the diagrams presented in Fig-

ures 1 and 2 [30,45,46]. The most promising candidates
seem to be variously doped superconducting compounds
such as spinel- and perovskite-type structures of super-
conducting compounds of the type A2−yByCuO4−x and
AyB3−yCu3O6+x, where A is a trivalent rare-earth and
B is a divalent alkali earth ion, as well as some recently
studied novel superconducting compounds of MgB2 with a
C, Al or Sc substitution, or organic superconductors with
a controlled bandwidth and band filling [47–51].
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Let us note that although the parameter η is fixed and
constant for each superconducting sample, one can mod-
ify η by placing the sample in an uniform perpendicular
magnetic field. Since we take into account the spin-triplet
paired states with the spin projection Sz = 0 and the spin-
singlet paired states, which are affected by the magnetic
field due to the Zeeman coupling, ineffectively, the Zeeman
coupling leads solely to the renormalization of the chem-
ical potential µ 
→ µ̄ = µ ± 1

2gµBH . Thus, the magnetic
field H moves singularities in K(ξ, ϕ) and in the density
of states away from the Fermi surface, and reduces the
enhancement of the transition temperature [52]. There-
fore, eventually, for sufficiently large H the field-induced
transition from the spin-singlet to the spin-triplet super-
conductivity should be observed, as it has been reported
recently [27].

Also note that many present experiments concentrate
on structural and thermodynamic properties of novel com-
pounds such as heavy fermion superconductors without a
center of symmetry implying a non-centrosymmetric or-
der parameter [25,26]. In such systems the broken inver-
sion symmetry and the accompanying antisymmetric spin-
orbit coupling, which admix spin-singlet and spin-triplet
pairing, are proposed to be considered as responsible for
such behavior, which should ensure quantitative agree-
ment of the experimental data with the theory.
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Appendix A: Fourier coefficients

The symmetry of the separated parts of pairing poten-
tials (6) and (7) corresponds to the group C4v. Hence the
the functions cos kx + cos ky, cos kx − cos ky, sin kx and
sin ky, defined in the two-dimensional momentum space,
can be expanded in the Fourier series in the (ξ, ϕ) space in
accordance with the symmetry properties of the harmonic
functions sinnϕ and cosnϕ [7]. Since the symmetry of this
problem is determined by the symmetry of the dispersion
relation (3), we state that kx and ky as functions ξ, ϕ
(0 ≤ ϕ < 2π), and η, can be expressed in two equivalent
forms (cf. Eq. (8)):

kx(ξ, ϕ, η) = arccos
1
η
[X(ξ, ϕ, η) − 1],

ky(ξ, ϕ, η) = arccos
1
η
[Y (ξ, ϕ, η) − 1],

or

kx(ξ, ϕ, η) = arccos
1
η
[Y (ξ, ϕ, η) − 1],

ky(ξ, ϕ, η) = arccos
1
η
[X(ξ, ϕ, η) − 1],

what appears as a result of the symmetry of the canon-
ical transformation ki 
→ π − ki, where i = x, y, of ex-
change between (0, 0) and (π, π). Hence, including that
X(ξ, ϕ, η) = Y (−ξ, ϕ,−η) and X(ξ, π

2 −ϕ, η) = Y (ξ, ϕ, η)
one can notice that the canonical transformation implies
that η as well as ξ must be replaced by −η and −ξ. The
main Fourier expansion coefficients (l = 0, 1, 2) can be
written in the following reduced forms

χ0(ξ, η) =
√

2
π

∫ π/2

0

[cos kx(ξ, ϕ, η) + cos ky(ξ, ϕ, η)] dϕ,

χ1(ξ, η) =
√

2
π

∫ π/2

0

[sin kx(ξ, ϕ, η)

+ sinky(ξ, ϕ, η)] cosϕdϕ

=
√

2
π

∫ π/2

0

[sin ky(ξ, ϕ, η) + sin kx(ξ, ϕ, η)] sin ϕdϕ

and

χ2(ξ, η) =
2
π

∫ π/2

0

[cos kx(ξ, ϕ, η)

− cos ky(ξ, ϕ, η)] cos 2ϕdϕ,

where we allow for the symmetry arising from the
canonical transformation, and we include that the ba-
sis functions of one-dimensional irreducible represen-
tations, as in cases l = 0 and 2, are transformed
into one-dimensional subspaces of functions after the
Fourier expansion, while projections of the basis func-
tions of the two-dimensional irreducible representation,
{sinkx, sinky}, onto the two-dimensional subspace of the
Fourier harmonics {cosϕ, sin ϕ} have to be invariants of a
possible choice of kx(ξ, ϕ, η) and ky(ξ, ϕ, η). Consequently,
the above Fourier expansion coefficients satisfy the iden-
tical conditions χ2

l (−ξ,−η) = χ2
l (ξ, η) for both possible

choices of kx(ξ, ϕ, η) and ky(ξ, ϕ, η).
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33. J. González, Phys. Rev. B 63, 024502 (2000)
34. E.Ya. Sherman, Phys. Rev. B 58, 14187 (1998)
35. Q. Yuan, P. Thalmeier, Phys. Rev. B 68, 174501 (2003)
36. R. Gonczarek, M. Krzyzosiak, Acta Phys. Polon. A 109,

493 (2006)
37. C.C. Tsuei, D.M. Newns, C.C. Chi, P.C. Pattnaik, Phys.

Rev. Lett. 65, 2724 (1990); C.C. Tsuei, D.M. Newns, C.C.
Chi, P.C. Pattnaik, Phys. Rev. Lett. 68, 1091 (1992)

38. E. Dagotto, A. Nazarenko, M. Boninsegni, Phys. Rev. Lett.
73, 728 (1994); E. Dagotto, Rev. Mod. Phys. 66, 763
(1994); E. Dagotto, A. Nazarenko, A. Moreo, Phys. Rev.
Lett. 74, 310 (1995)

39. J.M. Getino, M. de Llano, H. Rubio, Phys. Rev. B 48, 597
(1993); J.M. Getino, M. de Llano, H. Rubio, Phys. Rev. B
48, 597 (1993)

40. R.S. Markiewicz, Physica C 168, 195 (1990); R.S.
Markiewicz, Physica C 183, 303 (1991)

41. R.S. Markiewicz, C. Kusko, V. Kidambi, Phys. Rev. B 60,
627 (1999)

42. H.H. Fertwell, A. Kaminski, J. Mesot, J.C. Campuzano,
M.R. Norman, M. Randeria, T. Sato, R. Gatt, T.
Takahashi, K. Kadowaki, Phys. Rev. Lett. 84, 4449 (2000);
S.V. Borisenko, M.S. Golden, S. Legner, T. Pichler, C.
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